您现在的位置是:首页 > 行业 > 制造 >

中国高速切削技术发展现状

2009-08-24 22:44:00作者: 来源:

摘要 切削加工是机械加工应用最广泛的加工方法之一,而高速是它的重要发展方向,其中包括高速软切削、高速硬切削、高速干切削、大进给切削等。高速切削能够大幅度提高生产效率和单位时间内材料切除率,改善加工表面质量降低加工费用。...

l 高速切削技术与高速切削机理

    切削加工是机械加工应用最广泛的加工方法之一,而高速是它的重要发展方向,其中包括高速软切削、高速硬切削、高速干切削、大进给切削等。高速切削能够大幅度提高生产效率和单位时间内材料切除率,改善加工表面质量降低加工费用。

    高速切削是指在比常规切削速度高出很多的速度下进行的切削加工。各国对高速切削的速度范围没有统一的定义。有时候也称为超高速切削。通常把比常规切削速度高5~10倍的切削称为高速切削。目前一般的定义是将5~10倍于常规切削速度的切削称为高速切削。高速切削技术是在机床结构及材料、机床设计制造技术、高速主轴系统、快速进给系统、高性能CNC控制系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件与软件技术均得到充分发展的基础之上综合而成的。因此。高速切削加工是一个复杂的系统工程,涉及机床、刀具、工件、加工工艺过程参数及切削机理等诸多方面。

    生产率与切削速度有着很密切关系的,切削速度的提高可以提高生产率,同时精密和超精密加工技术的发展也对切削速度有了更进一步提高的要求。高速切削加工的概念提出后,经过长期的探索、研究和发展,被广泛应用于工业生产。高速切削除了能大幅度提高生产率以外,还可以提高加工质量,特别是改善已加工表面质量。传统的切削速度和刀具寿命的关系被假定为线性关系,即刀具的速度越高,刀具的磨损越快。20世纪上半叶,研究人员开始发现,在加工过程中,切削速度达到某个值后,情况开始发生变化,刀具磨损加剧,但是速度继续上升,超过某一值,又可以恢复正常加工。经过长期的生产实践,人们意识到对于某一特定的被加工材料来说,在比现行使用的切削速度高许多倍的区域可能存在一个十分理想的切削条件,在这个切削条件下,生产率高、刀具耐用度长,而且切削力也比较小。尽管目前已形成了高速切削的实用技术,但高速切削机理研究还只停留在一个试验探索阶段,在基础理论上的研究还不成熟。从切削过程中研究材料的物理力学性能变化状态,而不仅仅通过切削速度来区分常规切削加工和高速切削加工更为科学合理。

    对高速切削机理的研究,总的来说还处于一种边探索边应用之中。高速切削机理主要包括高速切削中切削力、切削热变化规律。刀具磨损的规律,切屑的成型机理以及这些规律和机理对加工的影响。目前对铝合金的高速切削机理的研究与应用比较成功,但对黑金属和难加工材料的高速切削机理的研究与应用尚处于不断探索之中,应用也是在不成熟的理论指导下进行。另外,高速切削机理的研究与应用已进入钻铰、攻丝等的切削方式中。但还处于探索阶段。随着科学技术的发展,对高速切削的切削力、切削热、切屑成型、刀具磨损、刀具寿命、加工的精度和表面质量等的变化规律将做更加深入的分析与研究。

2 高速切削技术分析

    高速切削技术作为一种高新的技术,其顺利地实现需要满足以下条件。

2.1 提供高性能的高速切削刀具

    刀具技术和机床制造是相辅相成共同发展的,只有刀具技术和机床技术不断发展,才能推进高速切削技术。目前,主要使用的高速切削刀具有:①涂层刀具。涂层刀具是通过在刀具基体上涂覆金属化合物薄膜,以获得远高于基体的表面硬度和优良的切削性能。最新开发的纳米涂层刀具材料在高速切削中也具有广阔的应用前景;②金属刀具。金属陶瓷具有较高的室温硬度、高温硬度及良好的耐磨性。金属陶瓷刀具可在300~500m/min的切削速度范围内高速精车钢和铸铁;③陶瓷刀具。瓷刀具材料主要有氧化铝基和氮化硅基两大类,是通过在氧化铝和氮化硅基体中分别加入碳化物、氮化物、硼化物、氧化物等得到的;④CBN刀具。方氮化硼(CBN)刀具具有极高的硬度及红硬性,是高速精加工或半精加工淬火钢、冷硬铸铁、高温合金等的理想刀具材料;⑤PCD刀具。聚晶金刚石(PCD)材料具有高硬度、高耐磨性、高导热性及低摩擦系数等特点,PCD刀具可实现有色金属及耐磨非金属材料的高速、高精度、高稳定性加工;⑥高速钢、硬质合金刀具。高性能钴高速钢、粉末冶金高速钢、整体硬质合金材料等已成为制造滚刀、剃齿刀、插齿刀等齿轮刀具的主流刀具材料。可用于齿轮的高速切削。用硬质合金粉末、高速钢粉末配制而成的新型粉末冶金材料制成的滚刀其滚削速度可达150~180m/min。如再对其进行TiAlN涂层处理,则可应用于高速干切削。

    高速切削刀具应具有良好的机械性能和热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。其采用的刀具材料主要是硬质合金,并且普遍采用刀具涂层技术。涂层材料为氮化钛(TiN)、氮化铝钛(TiAlN.)等。涂层技术由单一涂层发展为多层、多种涂层材料的涂层。这一技术已成为提高高速切削能力的关键技术之一。世界各大硬质合金刀具制造商一般都将销售收入的3%~ll%投入到研发中,其中相当一部分用于硬质合金和涂层材料的基础研究。高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的P类硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶金刚石PCD或CVD金刚石涂层刀具。选择切削参数时,针对圆刀片和球头铣刀,应注意有效直径的概念。高速铣削刀具应按动平衡设计制造。刀具的前角比常规刀具的前角要小,后角略大。主副切削刃连接处应修圆或导角,来增大刀尖角。防止刀尖处热磨损。应加大刀尖附近的切削刃长度和刀具材料体积。提高刀具刚性。刀具材料与被切削材料应具有较小的化学亲和力。高速铣削大多采用硬质合金刀具。在保证安全和满足加工要求的条件下。刀具悬伸尽可能短,刀体中央韧性要好。刀柄要比刀具直径粗壮,连接柄呈倒锥状以增加其刚性。尽量在刀具及刀具系统中央留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。

2.2 安装适合高速切削的CAM系统软件

    高速切削有着比传统切削特殊的工艺要求,除了要有高速切削机床和高速切削刀具。具有合适的CAM编程软件也是至关重要的。一个优秀的高速加工CAM编程系统应具有很高的计算速度,较强的插补功能,全程自动过切检查及处理能力,自动刀柄与夹具干涉检查、绕避功能,进给率优化处理功能。待加工轨迹监控功能,刀具轨迹编辑优化功能,加工残余分析功能等等。数控编程可分为几何设计(CAD)和工艺安排(CAM),在使用CAM系统进行高速加工数控编程时,除刀具和加工参数根据具体情况选择外,加工方法的选择和采用的编程策略就成为了关键,出色的使用CAD/CAM工作站的编程工程师应该同时也是一名合格的设计与工艺师,他应对零件的几何结构有一个正确的理解,具备对于理想工序安排以及合理刀具轨迹设计的知识和概念。首先,要注意加下方法的安全性和有效性;其次,要尽一切可能保证刀具轨迹光滑乎稳,这会直接影响加工质量和机床主轴等零件的寿命;第三,要尽量使刀具载荷均匀,这会直接影响刀具的寿命。另外,在国内外众多的CAD/CAM软件中并不是都适用于高速切削数控编程。这其中比较成熟适用于高速加工编程的有:英国DelCAM公司的PowerMill软件模块、日本Makino公司的FFCUT软件(其FF加工模块已集成到美国UGS公司的CAM软件中)、以色列的Cimatron软件、美国PTC公司的PRO/ENGINEER软件、国内北航海尔华正软件有限公司的CAXA—ME软件等。

3 高速切削技术在我国的现状

    我国在20世纪90年初开始了有关高速切削机床及工艺的研究。研究内容包括水泥床身、超高速主轴系统、全陶瓷轴承及磁悬浮轴承、快速进给系统、有色金属及铸铁超高速切削机理与适应刀具等方面。通过我国科技工作者的艰苦工作,各项关键技术都取得了显著进展。部分单项技术指标可达国际先进水平。然而高速切削机床是诸多高新技术的高度集成,并且在一定的市场需求驱动下才能真正发展起来。目前,真正应用于工业生产的完全由我国自行开发的国产高速切削机床还没有。高速切削在国内的研究及应用起步较晚,但进入20世纪90年代以来已普遍引起关注。

    目前全国大约有300多万台机床,大部分还是通用机床,数控机床包括经济型在内大致占lO%左右。在航空、航天、汽车、模具、机床和工程机械等行业进口数控机床和加工中心占了较大比例。现在国内lO000~15000 r/min的立式加工中心和18000r/min的卧式加工中心已开发成功并生产问世。生产的高速数字化仿形铣床最高转速达到了40000r/min,3500~4000r/min的数控车床和车削中心已成批生产,8000r/min的数控车床也已问世。高速机床的高档数控系统和开放式数控系统正在深入研究中。但目前主要还是依赖进口。目前国内正逐步开始推广应用高速切削技术,主要是应用在航空航天、模具和汽车工业,加工铝合金和铸铁较多,但采用的刀具以进口为主。

    国内刀具材料目前仍以高速钢、硬质合金刀具为主,先进刀具材料(如涂层硬质合金、金属陶瓷、陶瓷刀具、CBN和PCD刀具等)虽有一定基础,但应用范围不够广泛。总的来说,切削速度普遍偏低,切削水平和加工效率较低。高速切削基础理论研究起步较晚,20世纪80年代以来,国内对陶瓷刀具高速硬切削时的切屑形成、切削温度、切削力、刀具磨损与破损、刀具寿命和加工表面质量等规律进行了系统研究,并已在生产中得到较多应用。自90年代以来,对高速切削铝合金、钢、铸铁、高温合金、钛合金等的切削力、切削温度、刀具磨损与破损和刀具寿命进行了一定研究和探讨,但还没有进行全面系统的研究。对切削加工过程的监控技术研究较多,但投入生产使用的较少。

    高速切削是建立在制造技术全面发展的基础上的,一方面是数控机床的主机结构和数控系统具备了更高的刚性、更快的运动速度和精度,另一方面是各种刀具材料性能显著改善,以及新型刀具材料和涂层工艺的开发和推广应用。性能更耐磨、更可靠,价格相对低廉的刀具材料成为发展高速切削的可靠保证。国内在高速切削技艺研究方面取得了许多成果,尽管不能形成系统理论,但毕竟为推动高速切削技术的应用做出了贡献。目前我国在陶瓷刀具材料、细颗粒和超细粒牌号的硬质合金、涂层硬质合金及陶瓷、金刚石薄膜涂层刀具和CVD沉积厚膜刀具、立方氮化硼刀具等方面的开发及应用均形成一定规模。为实现高速切削提供适用的刀具。由于高速切削具备一系列显著优点,因而首先受到航空航天、汽车、模具等行业的青睐,这些部门进口的高速切削机床已颇具规模。然而,由于国内缺乏高速切削基础理论体系和工艺技术应用系统研究,因而高速切削生产中缺乏可靠的技术指导,生产中工艺不尽合理,没有充分发挥高速切削所固有的高效精密的优势。

4 高速切削存在的问题及发展展望

    高速切削是切削加工发展的主要方向之一。它除依赖于数控技术、微电子技术、新材料和新颖构件等基础技术的发展外,自身亦存在着一系列亟待攻克的技术问题,如刀具磨损严重、高速切削刀具切入切出时破损问题,高速切削用刀具材料价格昂贵。铣、镗等回转刀具及主轴需要动平衡,刀具夹持要牢靠安全,主轴系统昂贵且寿命短,而且所用高速加工机床及其控制系统价格昂贵,使得高速切削的一次性投入较大,这些问题制约着高速切削的进一步推广应用。高速切削发展趋势和未来研究方向归纳起来主要有:新一代高速大功率机床的开发与研制;高速切削动态特性及稳定性的研究;高速切削机理的深入研究;新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;⑤进一步拓宽高速切削工件材料及其高速切削工艺范围;⑥开发适用于高速切削加工状态的监控技术;⑦建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;⑧基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;⑨基于高速切削,开发推广高能加工技术。

5 结语

    高速切削技术是切削加工技术的主要发展方向之一。它会随着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。但也应清醒的看到。高速切削技术自身也存在着一些亟待解决的问题,这些都在一定程度上制约和阻碍了高速切削技术的发展,我们需要找准问题所在,认真研究并真正加以解决。

(责编:罗提)


(本文不涉密)
责任编辑:

站点信息

  • 运营主体:中国信息化周报
  • 商务合作:赵瑞华 010-88559646
  • 微信公众号:扫描二维码,关注我们